Mass Transfer Operations-01

- 1.1 Course Number: CH274
- 1.2 Contact Hours: 3-1-0 Credits: 11
- 1.3 Semester-offered: 3rd Year-odd
- 1.4 Prerequisite: Fluid Mechanics, Mass Energy Balance, Chemical Engineering Thermodynamics
- 1.5 Syllabus Committee Member: Dr G K Agrahari, Dr M. Kumar
- Objective: The objective of the course is to provide basic knowledge of mass transfer principles and to develop skills for designing of some of basic mass transfer equipment. This is a core course.

3. Course Content:

Unit-wise distribution of content and number of lectures

Unit	Topics	Sub-topics	Lectures
1	Introduction to Mass Transfer Operations	Steady state molecular diffusion in fluids, Multicomponent diffusion, Diffusivity in solids and applications, Diffusion of gases in porous solids and capillaries, Unsteady state diffusion	5
2	Mass Transfer Coefficients	Individual and overall mass transfer coefficients; analogy and correlations, theories of mass transfer	7
3	Absorption and Stripping	Counter-current multi-stage absorption, operating line, number of equilibrium stages, tray design, pressure drop calculations, tray efficiency. Design of packed tower: NTU, HTU, Loading/flooding criterion	10
4	Distillation	Flash distillation, columns and their process calculations, binary distillation in trayed towers: McCabe-Thiele method, open-steam distillation, Ponchon-Savarit Method, multicomponent distillation (basic)	10
5	Extraction	Liquid-liquid equilibria, design of single-stage extraction, type and design of equipment, cross- current extraction, continuous countercurrent multistage extraction	8
Total			40

4. Readings

- 4.1 Text Books:
 - 1. Treybal, R.E., "Mass-Transfer Operations", 3rd Edition, McGraw-Hill (1981)
 - 2. Dutta, B. K., "Principles of Mass transfer and Separation Processes, "Prentice-Hall of India, New Delhi (2007).
 - 3. Seader, J.D. and Henley, E.J., Separation Process Principles, Wiley, New York (1998)
- 4.2 Reference Books:
 - 1. Hines, A. L.; Maddox, R. N., Mass Transfer: Fundamentals and Applications, Prentice Hall; 1 Edition (1984).
 - 2. McCabe, W. L. and Smith, J. C., Unit Operations of Chemical Engineering, (3rd ed.), McGraw-Hill (1976).
 - 3. Geankoplis, C.J. "Transport Processes and Separation Process Principles". 4th Edition, Prentice-Hall of India, New Delhi (2005)
- 5. **Outcome of the Course:** The course will help students to understand the fundamental aspects of mass transfer in a single phase, or across a phase boundary. Students will get exposure to some basic mass transfer operations and equipment used in process industries and their design.